ºù«ÍÞÊÓƵ

Skip to main content

Nighttime Nitrogen Oxides

The nighttime nitrogen oxides, NO3 and N2O5, are reactive species that drive atmospheric chemical transformations in the dark.  The nitrate radical, NO3, has strong visible absorption bands near 662 nm.  The combination of cavity ring down spectroscopy (CRDS) at this wavelength with chemical titration via NO provides a sensitive and specific in-situ measurement of this compound, with sensitivity to 0.2 part per trillion by volume (pptv) in a 1-second average.  Thermal conversion of dinitrogen pentoxide, N2O5, in a separate channel allows for its detection with similar sensitivity.

 

 

 

 

 

 

The NOAA six channel CRDS instrument measures NO3 and N2O5together with NO, NO2, NO y and O3.  It has been deployed on aircraft, ships, tall towers and at ground sites around the world.  A separate two-channel instrument the measures only NO3and N2O5has been a versatile instrument for ground-based measurements and laboratory studies, also in a number of locations worldwide.

 

 

 

 

References

Brown, S.S., H.J. An, M. Lee, J.H. Park, S.D. Lee, D.L. Fibiger, E.E. McDuffie, W.P. Dubé, N.L. Wagner, and K.E. Min, Cavity Enhanced Spectroscopy for Measurement of Nitrogen Oxides in the Anthropocene: Results from the Seoul Tower during MAPS 2015. Faraday Discussions, 2017. 200: p. 529-557.  

Dorn, H.P., R.L. Apodaca, S.M. Ball, T. Brauers, S.S. Brown, J.N. Crowley, W.P. Dubé, H. Fuchs, R. Häseler, U. Heitmann, R.L. Jones, A. Kiendler-Scharr, I. Labazan, J.M. Langridge, J. Meinen, T.F. Mentel, U. Platt, D. Pöhler, F. Rohrer, A.A. Ruth, E. Schlosser, G. Schuster, A.J.L. Shillings, W.R. Simpson, J. Thieser, R. Tillmann, R. Varma, D.S. Venables, and A. Wahner, Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmos. Meas. Tech., 2013. 6: p. 1111-1140. 

Fuchs, H., W.R. Simpson, R.L. Apodaca, T. Brauers, R.C. Cohen, J.N. Crowley, H.P. Dorn, W.P. Dubé, J.L. Fry, R. Häseler, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, T.F. Mentel, Y. Nakashima, F. Rohrer, A.W. Rollins, G. Schuster, R. Tillmann, A. Wahner, P.J. Wooldridge, and S.S. Brown, Comparison of N2O5 mixing ratios during NO3Comp 2007 in SAPHIR. Atmos. Meas. Tech., 2012. 5: p. 2763-2777.  

Wagner, N.L., W.P. Dubé, R.A. Washenfelder, C.J. Young, I.B. Pollack, T.B. Ryerson, and S.S. Brown, Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft. Atmos. Meas. Tech., 2011. 4: p. 1227-1240.  

Dubé, W.P., S.S. Brown, H.D. Osthoff, M.R. Nunley, S.J. Ciciora, M.W. Paris, R.J. McLaughlin, and A.R. Ravishankara, Aircraft instrument for simultaneous, in-situ measurements of NO3 and N2O5 via cavity ring-down spectroscopy. Rev. Sci. Instr., 2006. 77: p. 034101.  

Brown, S.S., H. Stark, and A.R. Ravishankara, Cavity ring-down spectroscopy for atmospheric trace gas detection:  Application to the nitrate radical (NO3). Appl. Phys. B., 2002. 75: p. 173-182.  

Brown, S.S., H. Stark, S.J. Ciciora, R.J. McLaughlin, and A.R. Ravishankara, Simultaneous in-situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy. Rev. Sci. Instr., 2002. 73(9): p. 3291-3301. 

Brown, S.S., H. Stark, S.J. Ciciora, and A.R. Ravishankara, In-situ measurement of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy. Geophys. Res. Lett., 2001. 28(17): p. 3227-3230.