trapping force F_t is calculated using the Stokes' law $F_t = 6\pi^2 D\alpha_4 \vartheta r$. Here the effective viscosity of the LC is approximated by the Leslie coef cient α_4 .⁹ We measure the velocity of the bead at the moment of escape from the trap and thus determine F_t . The Reynolds numbers were kept low enough ≤ 10

[()] () () μ

15054-366.337(s)0.1135911(x)-42154032(C")-3135911(t)-0.166113(e)-0.137421(n)500.135911(t)-0.166113(e)-0.166112(e)-0.166112(e)-0.166113(e)-0.16

wveib

d

d