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1. Introduction 

Nanostructured materials are poised to revolutionize scientific instruments, technologies, and 

consumer devices. Liquid crystalline intermediate phases confer long-range orientational order that has 

been previously used to improve the properties of fibers and deposited films for biomedical [1], 

optical [2], and electronic [3,4] applications. Liquid crystals (LCs) can act as smart hosts that align 

anisotropic nanoparticle inclusions and leverage nanoscale anisotropy into device scale polarization 

sensitivity [5]. Self-assembly of plasmonic nanoparticles in LCs has been extensively studied 

recently [6–8]. Gold nanorods (GNRs) have two surface 
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Figure 3. SEM imaging of thin films of CNCs with embedded GNRs (with a thin carbon 

coat to improve conductivity). (a,b) Co-located images obtained with (a) in-lens (
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polarization-dependent SPR effect, indicating that silica capped GNRs maintained their rod-like 

structure. Using low-voltage SEM, we observed that the films had a mesoporous structure, which was 

consistent with what was previously observed for such films without GNRs [21]. GNRs tended to be 

evenly dispersed throughout the film, with a lower degree of alignment than in the cellulose films. The 

estimated scalar order parameter of GNRs that we could achieve by polarization-dependent extinction 

spectra in this case was Ὓ πȢςυ. The reduced value of the orientational order parameter may be 

partially due to the high-temperature treatment known to affect gold nanoparticles [22]. The 

longitudinal plasmonic peak shifted from 680 nm (Figure 1d, 2h) to 630 nm (Figure 3c) due to a 

combination of two effects, the nanorods being deformed by heating and the silica having different 

dielectric properties than the cellulose. However, it is interesting that the alignment persisted upon 

removal of CNCs, providing a potentially useful approach for scalable fabrication of composite 

mesostructured films with orientationally ordered plasmonic nanoparticles in a silica matrix. These 

obtained hybrid thin films can be practically useful. The mesoporous silica surface, which encloses the 

GNRs, can be functionalized with various chemicals, and the unique absorption properties of the film 

could be used to study chemical reactions, or to create a catalyst for chemical reactions. The presence 

of orientationally-ordered plasmonic nanostructures in such films may provide the means of efficient 

use of light for controlling and guiding reactions and processes in various applications. 

Figure 4. Mesoporous silica films containing aligned GNRs. (a,b) Bright field polarizing 

microscopy images with the polarization parallel (a) and perpendicular (b) to the director. 

(c) Absorption spectra of the film as measured with polarization parallel (red) and 

perpendicular (blue) to the director. (d,e) TPL images of GNRs taken with polarization 

parallel (d) and perpendicular (e) to the director, confirming alignment of the gold 

nanoparticles with their long axes on-average parallel to the director. The homogeneous 

TPL signal in the images confirms uniform distribution of GNRs. (f,g) SEM images of the 

mesoporous film showing (f) alignment of GNRs and (g
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2.3. Discussion 

Unlike their dichroic dye based counterparts, plasmonic polarizers allow for very precise control 

over the operational spectrum of a polarizer as well as the ability to polarize light of different 

wavelengths, including the ultraviolet and infrared parts of an optical spectrum [23]. The transverse 

plasmonic absorption is generally a function of the material used for the rod-like nanoparticles, with 

nickel having an absorption peak at 380 nm, silver absorbing at 420 nm, gold at 525 nm and copper at 

~580 nm [23]. The longitudinal SPR 
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