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one-dimensional arrays of topological solitons localizing on the 
sides of the optical soliton. We experimentally reveal that this 
behaviour stems from the elaborate dynamical trajectories of topo-
logical solitons navigating their way when guided by particular opti-
cal solitons (Fig. 1c, bottom). What is the physical underpinning of 
this unexpected behaviour?

Our unwound chiral LC system is confined between glass plates, 
imposing an optical axis orientation n0 normal to the surfaces 
(see Methods). These samples host localized patterns of optical 
axis embedding an emblematic example of a topological soliton—
the baby skyrmion—whose optical axis field is shown in Fig. 1a 
and whose name refers to Skyrme’s topological solitons used to 
describe subatomic particles with different baryon numbers5. It 
covers twice the order parameter space of nonpolar unit vectors 
n with antipodal symmetry n ↔ −n, that is, antipodal points on a 
sphere (Fig. 1a, right). To emphasize the topological and nonpolar  

properties of these optical axis patterns, we introduce a colour 
scheme that associates an optical axis orientation with a colour. 
Our topological colouring is used for all cylindrical-glyph-based 
or continuous-colour plots of topological solitons and is detailed in 
Supplementary Section 2C, where we explain all the subtleties. For 
the skyrmion of Fig. 1a, one can easily check that white corresponds 
to the far-field optical axis n0 and that the primary colours blue, red 
and green (associated with tilted cylinders) appear twice. Each of 
these colours is associated with the antipodal peaks on the sphere 
of Fig. 1a. The two-dimensional structure of Fig. 1a corresponds to 
the mid-sample plane of the three-dimensional structure of Fig. 1b, 
which shows a few isosurfaces with fixed angles between n and n0. 
The quantity δnTS corresponds to the deviation of the optical axis 
field nTS with respect to the far-field optical axis n0 ≡ ex (unit vector 
of x-axis on Fig. 1) imposed by the confining plates and fully defines 
this class of topological structures called torons32, where ‘TS’ refers 
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to topological solitons. Although more complex torons32 and other 
solitons30–34 can be realized, our study in this work focuses solely on 
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The force FL is directly proportional to the opposite of the aver-
aged deflection of light’s momentum Δp (see Fig. 1d) and is there-
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