Publications

The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder. 
The slides and posters are licensed to me under .

Edited Series

  • Chen, C., D. Cooley, J. Runge, and E. Szekely, (Eds.), I. Ebert-Uphoff, D. Hammerling, C. Monteleoni, D. Nychka (Series Eds.), . NCAR Technical Note NCAR/TN-550+PROC, 2018, 151 pp, doi:10.5065/D6BZ64XQ.
  • V. Lyubchich, N.C. Oza, A. Rhines, E. Szekely (Eds.), I. Ebert-Uphoff, C. Monteleoni, D. Nychka (Series Eds.), . NCAR Technical Note NCAR/TN-536+PROC, Sept 2017, doi: 10.5065/D6222SH7.
  • A. Banerjee, W. Ding, J. Dy, S. Lyubchich, A. Rhines (Eds.), I. Ebert-Uphoff, C. Monteleoni, D. Nychka (Series Eds.), . NCAR Technical Note NCAR/TN-529+PROC, September 2016, 159 pages, doi: 10.5065/D6K072N6, ISBN: 978-0-9973548-1-2.

Book Chapters

  • S. McQuade and C.Monteleoni, “,” Chapter 3, in Large-Scale Machine Learning in the Earth Sciences, Srivastava, Nemani, Steinhaeuser (Eds.), Data Mining and Knowledge Discovery Series, V. Kumar (Series Ed.), Chapman & Hall/CRC, pp. 33–54, August 2017. Invited.
  • C. Tang and C. Monteleoni, â€ś,” in Regularization, Optimization, Kernels, and Support Vector Machines. Johan A. K. Suykens, Marco Signoretto, and Andreas Argyriou. (Eds.), CRC Press, Taylor & Francis Group. Chapter 7, pp. 159–175, 2014.  Invited. 
  • C. Monteleoni, , F. Alexander, A. Niculescu-Mizil, K. Steinhaeuser, , , M.B. Blumenthal, A.R. Ganguly, J.E. Smerdon, and M. Tedesco, â€śClimate Informatics,” in Computational Intelligent Data Analysis for Sustainable Development; Data Mining and Knowledge Discovery Series. Yu, T., Chawla, N., and Simoff, S. (Eds.), CRC Press, Taylor & Francis Group. Chapter 4, pp. 81–126, 2013.  Invited.

Journals & Periodicals

  • L. Alexander, S. Das, Z. Ives, H.V. Jagadish, and C. Monteleoni, “Research Challenges in Financial Data Modeling and Analysis.” In Big Data, Sep 2017, 5(3): 177-188.
  • R. L. Glicksman, D. L. Markell, and C. Monteleoni, â€śTechnological Innovation, Data Analytics, and Environmental Enforcement,” in Ecology Law Quarterly, University of California, Berkeley, School of Law, Volume 44, Issue 1, 2017.  Invited. 
  • , K. Choromanski, , and C. Monteleoni, â€śDifferentially-Private Learning of Low Dimensional Manifolds,” in Theoretical Computer Science (TCS), Volume 620, pp. 91–104, March 2016.  Invited. 
  • C. Tang and C. Monteleoni, â€śCan Topic Modeling Shed Light on Climate Extremes?” in IEEE Computing in Science and Engineering (CISE) Magazine, Special Issue on Computing & Climate. Vol. 17, no. 6, pp. 43–52, Nov./Dec. 2015. 
  • C. Monteleoni, , S. McQuade, â€śClimate Informatics: Accelerating Discovery in Climate Science with Machine Learning,” in IEEE Computing in Science and Engineering (CISE) Magazine, Special Issue on Machine Learning. Vol. 15, no. 5, pp. 32–40, Sept.-Oct. 2013.  Invited.
  • C. Monteleoni, , S. Saroha, and E. Asplund, â€śTracking Climate Models,” in Journal of Statistical Analysis and Data Mining:  Special Issue: Best of CIDU 2010. Volume 4, Issue 4, pp. 72–392, August 2011.  Invited.
  • , C. Monteleoni, and , â€śDifferentially Private Empirical Risk Minimization,” in Journal of Machine Learning Research (JMLR), 12(Mar):1069–1109, 2011.  
  • , , and C. Monteleoni, “Analysis of Perceptron-Based Active Learning,” in Journal of Machine Learning Research (JMLR), 10(Feb):281–
    299, 2009. 

Refereed Proceedings

  • S. Giffard-Roisin, M. Yang, G. Charpiat, B. KĂ©gl, and C. Monteleoni, “Fused Deep Learning for Hurricane Track Forecast From Reanalysis Data.” In Proceedings of the 8th International Workshop on Climate Informatics (CI), 2018.
  • M. Mohan and C. Monteleoni,  â€śBeyond the Nyström approximation: Speeding up spectral clustering using uniform sampling and weighted kernel k-means,” in Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.
  • M. Mohan and C. Monteleoni,  â€śExploiting Sparsity to Improve the Accuracy of Nyström-based Large Scale Spectral Clustering,” in Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), 2017.
  • C. Tang and C. Monteleoni,  â€śConvergence rate of stochastic k-means,” in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017. 
  • S. McQuade and C. Monteleoni,  â€śOnline learning of volatility from multiple option term lengths,” in Proceedings of the International Workshop on Data Science for Macro-Modeling with Financial and Economic Datasets (DSMM 2016), International Conference on Management of Data (SIGMOD/PODS), 2016. 
  • C. Tang and C. Monteleoni,  â€śOn Lloyd's algorithm: new theoretical insights for clustering in practice,” in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 2016. 
  • S. McQuade and C. Monteleoni,  â€śMulti-Task Learning from a Single Task: Can Different Forecast Periods be Used to Improve Each Other?” in Proceedings of , 2015.  
  • M. Mohan, C. Tang, C. Monteleoni, , and ,  â€śSeasonal Prediction Using Unsupervised Feature Learning and Regression,” in Proceedings of , 2015.  
  • , C. Monteleoni, S. McQuade, , , and ,  â€śTracking Seasonal Prediction Models,” in Proceedings of , 2015.  
  • C. Tang and C. Monteleoni,  â€śDetecting Extreme Events from Climate Time-Series via Topic Modeling,” in Machine Learning and Data Mining Approaches to Climate Science: Proceedings of the 4th International Workshop on Climate Informatics. Lakshmanan, V., Gilleland, E., McGovern, A., Tingley, M. (Eds.), Springer, 2015.  
  • M. Mohan, D. Gálvez-LĂłpez, C. Monteleoni, and G. Sibley, â€śEnvironment Selection And Hierarchical Place Recognition,” in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015. 
  • , C. Monteleoni, and K. Pillaipakkamnatt,  â€śA Semi-Supervised Learning Approach to Differential Privacy,” in Proceedings of the 2013 IEEE International Conference on Data Mining Workshops (ICDMW), IEEE Workshop on Privacy Aspects of Data Mining (PADM), 2013. 
  • , , H. Kim, M. Mohan, and C. Monteleoni,  â€śFast spectral clustering via the Nyström method,” in Algorithmic Learning Theory, 24th International Conference (ALT), 2013. 
  • , K. Choromanski, , and C. Monteleoni, â€śDifferentially-Private Learning of Low Dimensional Manifolds,” in Algorithmic Learning Theory, 24th International Conference (ALT), 2013. 
  • M. Ghafarianzadeh and C. Monteleoni,  â€śClimate Prediction via Matrix Completion,” in Proceedings of the Twenty-Seventh Conference on Artificial Intelligence (AAAI), Late-Breaking Papers Track, 2013. 
  • S. McQuade and C. Monteleoni,  â€śGlobal Climate Model Tracking using Geospatial Neighborhoods,” in Proceedings of the Twenty-Sixth Conference on Artificial Intelligence (AAAI), Computational Sustainability and AI Special Track, 2012. 
  •  and C. Monteleoni,  â€śOnline Clustering with Experts,” in the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 2012. 
  •  and C. Monteleoni,  â€śOnline Clustering with Experts,” in Proceedings of ICML 2011 Workshop on Online Trading of Exploration and Exploitation 2; Journal of Machine Learning Research (JMLR) Workshop and Conference Proceedings, 2012. 
  • C. Monteleoni, , and S. Saroha, â€śTracking Climate Models,” in NASA Conference on Intelligent Data Understanding (CIDU), 2010.  Awarded Best Application Paper. 
  • , , and C. Monteleoni, “Streaming k-means approximation,” in Advances in Neural Information Processing Systems (NIPS), 2009.
  •  and C. Monteleoni, “Privacy-preserving logistic regression,” in Advances in Neural Information Processing Systems (NIPS), 2008.
  • , , and C. Monteleoni, “A general agnostic active learning algorithm,” in Advances in Neural Information Processing Systems (NIPS), 2007.
  • C. Monteleoni and , “Practical Online Active Learning for Classification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Online Learning for Classification Workshop, (CVPR), 2007.
  • C. Monteleoni, "Efficient Algorithms for General Active Learning," in Proceedings of the 19th Annual Conference on Learning Theory, Open Problems, (COLT), 2006.
  • , , and C. Monteleoni, “Analysis of perceptron-based active learning,”
     in Proceedings of the 18th Annual Conference on Learning Theory (COLT), 2005.
  • C. Monteleoni and , “Online Learning of Non-stationary Sequences,” in Advances in Neural Information Processing Systems (NIPS) 16, 2003.
  • C. Boutilier, M. Goldszmidt, C. Monteleoni, and B. Sabata, "Resource Allocation using Sequential Auctions," in Agent-Mediated Electronic Commerce II, Lecture Notes in Artificial Intelligence 1788. Springer-Verlag, 2000. 
  • A. Kehler, J.R. Hobbs, D. Appelt, J. Bear, M. Caywood, D. Israel, M. Kameyama, D. Martin, and C. Monteleoni, "Information Extraction, Research and Applications: Current Progress and Future Directions," in TIPSTER Text Program Phase III Proceedings, 1999. 

Workshop Papers 

  • S. Giffard-Roisin, M. Yang, G. Charpiat, B. KĂ©gl, and C. Monteleoni, "Deep Learning for Hurricane Track Forecasting from Aligned Spatio-temporal Climate Datasets," in , NIPS 2018.
  • C. Tang and C. Monteleoni, “Demystifying wide nonlinear auto-encoders: fast SGD convergence towards sparse representation from random initialization.” In Workshop for Women in Machine Learning, collocated with NIPS 2017.
  • C. Tang and C. Monteleoni,  â€śThe convergence rate of stochastic k-means,” in , ICML 2016.
  • C. Tang and C. Monteleoni,  â€śOn Lloyd's algorithm: new theoretical insights for clustering in practice,” in , NIPS 2015.
  • C. Tang and C. Monteleoni,  â€śScalable constant k-means approximation via heuristics on well-clusterable data,” in , NIPS 2015.
  • C. Tang and C. Monteleoni,  â€śScaling up Lloyd’s algorithm: stochastic and parallel block-wise optimization perspectives,” in the 7th NIPS Workshop on Optimization for Machine Learning (), NIPS 2014.
  • S. McQuade and C. Monteleoni,  â€śMRF-Based Spatial Expert Tracking of the Multi-Model Ensemble,” in New Approaches for Pattern Recognition and Change Detection, session at American Geophysical Union (AGU) Fall Meeting, 2013.  
  • M. Ghafarianzadeh and C. Monteleoni,  â€śClimate Prediction via Matrix Completion,” in Workshop on Machine Learning for Sustainability, NIPS 2013.  
  • M. Ghafarianzadeh and C. Monteleoni,  â€śClimate Prediction via Matrix Completion,” in Workshop for Women in Machine Learning (WiML), collocated with NIPS 2013.  
  • C. Tang and C. Monteleoni,  â€śConvergence analysis of stochastic gradient descent on strongly convex objective functions,” in Workshop for Women in Machine Learning (WiML), collocated with NIPS 2013.  
  • S. McQuade and C. Monteleoni,  â€śMRF-Based Spatial Expert Tracking of the Multi-Model Ensemble,” in , 2013.  
  • M. Ghafarianzadeh and C. Monteleoni,  â€śClimate Prediction via Matrix Completion,” in , 2013.  
  • C. Tang and C. Monteleoni,  â€śConvergence analysis of stochastic gradient descent on strongly convex objective functions,” in  (ROKS), 2013.  
  • S. McQuade and C. Monteleoni,  â€śGlobal Climate Model Tracking using Geospatial Neighborhoods,” in , 2012.  
  • S. McQuade and C. Monteleoni,  â€śGlobal Climate Model Tracking using Geospatial Neighborhoods,” in , 2012.  
  •  and C. Monteleoni,  â€śOnline Clustering with Experts,” in , 2012.  
  •  and C. Monteleoni,  â€śOnline Clustering with Experts,” in Workshop for Women in Machine Learning (WiML), collocated with NIPS 2011. 
  • , C. Monteleoni, and Krishnan Pillaipakkamnatt ,  â€śA Semi-Supervised Learning Approach to Differential Privacy,” in Workshop for Women in Machine Learning (WiML), collocated with NIPS 2011. 
  •  and C. Monteleoni,  â€śOnline Clustering with Experts,” in the Sixth Annual Machine Learning Symposium, New York Academy of Sciences, 2011.  Student Paper Award, Third Place.
  •  and C. Monteleoni,  â€śOnline Clustering with Experts,” in , ICML 2011.  
  • C. Monteleoni, S. Saroha, and ,  â€śTracking Climate Models,” in , 2010.  
  • C. Monteleoni, S. Saroha, and ,  â€śCan machine learning techniques improve forecasts?” in Intergovernmental Panel on Climate Change (IPCC) Expert Meeting on Assessing and Combining Multi Model Climate Projections, şů«ÍŢĘÓƵ, 2010.
  • C. Monteleoni, S. Saroha, and ,  â€śTracking Climate Models,” in Workshop on Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing, NIPS 2009. 
  • H. Dutta, D. Waltz, A. Moschitti, D. Pighin, P. Gross, C. Monteleoni, A. Salleb-Aouissi, A. Boulanger, M. Pooleery, and R. Anderson, â€śEstimating the Time Between Failures of Electrical Feeders in the New York Power Grid,” in Next Generation Data Mining Summit, 2009.
  • , , and C. Monteleoni, “One-pass approximate k-means optimization,” in Workshop on On-line Learning with Limited Feedback, ICML/UAI/COLT 2009.
  • C. Monteleoni, , , and , â€śReal-Time Prediction Using Online Learning: Application to Energy Management in Wireless Networks.” in Forum on Analytics, San Diego, 2007.  Long version: â€śManaging the 802.11 Energy/Performance Tradeoff with Machine Learning,” in MIT-LCS-TR-971 Technical Report, MIT Computer Science and Artificial Intelligence Lab, 2004.
  • , , and C. Monteleoni, â€śA general agnostic active learning algorithm,” in Workshop for Women in Machine Learning (WiML), Orlando, 2007. 
  • C. Monteleoni and , "Active Learning under Arbitrary Distributions" in , NIPS 2005.

Theses